US06CPHY06 Instrumentation and Sensors UNIT 2 Part 2 Pressure Measurements

Instrumentation, Measurement and Analysis

Second Edition

UNIT-II Transducer Elements, Pressure Measurements

Transducer Elements: Ionization Transducers, Mechno-Electronic Transducer, Opto-Electrical Transducer, Photo-emissive Transducer, Photo-conductive Transducer, Photo-voltaic Transducer **Pressure Measurements:** Introduction, Moderate Pressure Measurements, Manometers, High Pressure Measurements, Low Pressure (Vacuum) measurements, McLeod Gauge, Thermal conductivity or Pirani Gauge, Ionization Gauge, Knudsen Gauge

Pressure Measurements

What is 'Pressure' ?

Pressure: Force exerted by a fluid on unit surface area of a container i.e. **P** = **F**/**A**.

Pressure Measurement : Range & Techniques

•Very High > 1000 atm •Moderate • Very Low < 1mm of Hg (Torr) Static OR Dynamic e.g. compressors of engine. Moderate Pressure Measurements: Manometers : Static Pressure
Other devices using elastic elements: For both Static and Dynamic Pressure

Manometers: Static Pressure Measurements

Manometers:

Manometer fluid Characteristics

Manometer fluid

•Non-Corrosive

- No chemical reaction with fluid whose pressure is to be measured
- Low viscosity for quick adjustment with pressure change
- Negligible surface tension and capillary effects

Why manometers are modified ?

For ease in useTo increase sensitivity

Types of Modified Manometers

- Cistern or Well Type
- Inclined Tube Type
- Movable Tube Type
- Micrometer Type
- Micro manometer with motor drive and digital read out.

Cistern or Well type Manometer

Since A₁ >> A₂, Change in Change in limb level >> well level So, Change in well level is ignored and reading of only one limb (h) is recorded.

If P_1 and P_2 are absolute pressure, then force equilibrium gives $P_1A - P_2A = Ah\rho g$ (since $P_1\overline{e}.F_1A - P_2 = h\rho g$

If P_2 is P_{atm} then, $(P_1 - P_2)$ gives Gage pressure (applied).

Inclined Tube Manometer

When P₁ = P₂ i.e. equilibrium

Micrometer Type Manometer

Micrometer screw head

 Increased accuracy in reading of he output of manometer i.e. liquid displacement.

Contact between
micrometer screw and liquid
level can be sensed
electrically for more
accuracy

Movable Tube Type Manometer

Micrometer with motor-drive Type Manometer

Elastic Transducers: Static/Dynamic Pressure Principle of Working:

Elastic Elements:

Elastic Elements:

Bourdon Gage:

Bourdon Gage:

Bourdon Tube Gauge

2 2001-2009 Makeood Altranovid Technology Educated Camer

LVDT Type Pressure Transducer

Variable capacitance Type Pressure Transducer

Due to pressure diaphragm displaces and Capacitance changes

Piezo-electric Type Pressure Transducer

ue to pressure crystal squeezes to produce voltage between A and B . Only dynamic pressures can be measured.

Resistance Strain-gages Pressure Transducer

Resistance Strain-gages Pressure Transducer

Piston Type Strain-gages Pressure Transducer

Strain-gages Transducer-For Fluid Pressure

Elastic Element Characteristics

 For elastic elements used in pressure transducers
➢ Deflection due to pressure and
➢ Dynamic properties are of great importance

Elastic Element Characteristics Deflection due to pressure Deflected diaphragm R Diaphragm of thickness t & radius R Pressure (p) $y = \frac{3}{16} p \frac{(1 - v^2)}{Et^3} (R^2 - r^2)^2$ Deflection at r,

 $p = pressure \ at \ r$, $v = Poisson \ ratio$ $t = thickness \ E = Young \ Modulus$

$$y_{max}(at r = 0) = \frac{3}{16} \frac{p(1 - v^2)}{Et^3} R^4$$
$$y_{max} < t/3$$

Elastic Element: Dynamic Characteristics

Fundamental frequency of vibration for a circular diaphragm of radius R, is

$$\omega_n = \frac{10.21}{R^2} \sqrt{\frac{Et^2}{12(1-v^2)\rho}} \ rad/s$$

Here ρ is the mass density of the diaphragm material

Let ω_e be the exciting frequency of vibrations of the elastic element, then

 $\omega_n \gg \omega_e$

for dynamic considerations

Elastic Element: Dynamic Characteristics "Points to consider"

The properties of pressure transmitting fluid & the connecting tubing are also important.

The effective mass of the moving system depends on

the mass of the fluid that moves with the deflected elastic diaphragm.

•The damping action depends on fluid friction.

High Pressure Measurements